Statistical Power Analysis For The Behavioral Sciences

Author: Jacob Cohen
Publisher: Routledge
ISBN: 1134742770
Size: 68.87 MB
Format: PDF, ePub, Docs
View: 7429
Download Read Online

Statistical Power Analysis For The Behavioral Sciences from the Author: Jacob Cohen. Statistical Power Analysis is a nontechnical guide to power analysis in research planning that provides users of applied statistics with the tools they need for more effective analysis. The Second Edition includes: * a chapter covering power analysis in set correlation and multivariate methods; * a chapter considering effect size, psychometric reliability, and the efficacy of "qualifying" dependent variables and; * expanded power and sample size tables for multiple regression/correlation.

Statistical Power Analysis For The Social And Behavioral Sciences

Author: Xiaofeng Steven Liu
Publisher: Routledge
ISBN: 1136464190
Size: 23.45 MB
Format: PDF, Mobi
View: 2044
Download Read Online

Statistical Power Analysis For The Social And Behavioral Sciences from the Author: Xiaofeng Steven Liu. This is the first book to demonstrate the application of power analysis to the newer more advanced statistical techniques that are increasingly used in the social and behavioral sciences. Both basic and advanced designs are covered. Readers are shown how to apply power analysis to techniques such as hierarchical linear modeling, meta-analysis, and structural equation modeling. Each chapter opens with a review of the statistical procedure and then proceeds to derive the power functions. This is followed by examples that demonstrate how to produce power tables and charts. The book clearly shows how to calculate power by providing open code for every design and procedure in R, SAS, and SPSS. Readers can verify the power computation using the computer programs on the book's website. There is a growing requirement to include power analysis to justify sample sizes in grant proposals. Most chapters are self-standing and can be read in any order without much disruption.This book will help readers do just that. Sample computer code in R, SPSS, and SAS at www.routledge.com/9781848729810 are written to tabulate power values and produce power curves that can be included in a grant proposal. Organized according to various techniques, chapters 1 – 3 introduce the basics of statistical power and sample size issues including the historical origin, hypothesis testing, and the use of statistical power in t tests and confidence intervals. Chapters 4 - 6 cover common statistical procedures -- analysis of variance, linear regression (both simple regression and multiple regression), correlation, analysis of covariance, and multivariate analysis. Chapters 7 - 11 review the new statistical procedures -- multi-level models, meta-analysis, structural equation models, and longitudinal studies. The appendixes contain a tutorial about R and show the statistical theory of power analysis. Intended as a supplement for graduate courses on quantitative methods, multivariate statistics, hierarchical linear modeling (HLM) and/or multilevel modeling and SEM taught in psychology, education, human development, nursing, and social and life sciences, this is the first text on statistical power for advanced procedures. Researchers and practitioners in these fields also appreciate the book‘s unique coverage of the use of statistical power analysis to determine sample size in planning a study. A prerequisite of basic through multivariate statistics is assumed.

The Essential Guide To Effect Sizes

Author: Paul D. Ellis
Publisher: Cambridge University Press
ISBN: 0521142466
Size: 59.72 MB
Format: PDF
View: 7175
Download Read Online

The Essential Guide To Effect Sizes from the Author: Paul D. Ellis. A jargon-free introduction for students and researchers looking to interpret the practical significance of their results.

Statistical Power Analysis

Author: Kevin R. Murphy
Publisher: Routledge
ISBN: 131768057X
Size: 37.29 MB
Format: PDF, ePub
View: 6430
Download Read Online

Statistical Power Analysis from the Author: Kevin R. Murphy. Noted for its accessible approach, this text applies the latest approaches of power analysis to both null hypothesis and minimum-effect testing using the same basic unified model. Through the use of a few simple procedures and examples, the authors show readers with little expertise in statistical analysis how to obtain the values needed to carry out the power analysis for their research. Illustrations of how these analyses work and how they can be used to choose the appropriate criterion for defining statistically significant outcomes are sprinkled throughout. The book presents a simple and general model for statistical power analysis based on the F statistic and reviews how to determine: the sample size needed to achieve desired levels of power; the level of power needed in a study; the size of effect that can be reliably detected by a study; and sensible criteria for statistical significance. The book helps readers design studies, diagnose existing studies, and understand why hypothesis tests come out out the way they do. The fourth edition features: -New Boxed Material sections provide examples of power analysis in action and discuss unique issues that arise as a result of applying power analyses in different designs. -Many more worked examples help readers apply the concepts presented. -Expanded coverage of power analysis for multifactor analysis of variance (ANOVA) to show readers how to analyze up to four factors with repeated measures on any or all of the factors. -Re-designed and expanded web based One Stop F Calculator software and data sets that allow users to perform all of the book's analyses and conduct significance tests, power analyses, and assessments of N and alpha needed for traditional and minimum-effects tests. -Easy to apply formulas for approximating the number of subjects required to reach adequate levels of power in a wide range of studies. Intended as a supplement for graduate/advanced undergraduate courses in research methods or experimental design, intermediate, advanced, or multivariate statistics, statistics II, or psychometrics, taught in psychology, education, business, and other social and health sciences, researchers also appreciate the book‘s applied approach.

Power Analysis For Experimental Research

Author: R. Barker Bausell
Publisher: Cambridge University Press
ISBN: 9781139441667
Size: 48.38 MB
Format: PDF, ePub
View: 3458
Download Read Online

Power Analysis For Experimental Research from the Author: R. Barker Bausell. Power analysis is an essential tool for determining whether a statistically significant result can be expected in a scientific experiment prior to the experiment being performed. Many funding agencies and institutional review boards now require power analyses to be carried out before they will approve experiments, particularly where they involve the use of human subjects. This comprehensive, yet accessible, book provides practising researchers with step-by-step instructions for conducting power/sample size analyses, assuming only basic prior knowledge of summary statistics and the normal distribution. It contains a unified approach to statistical power analysis, with numerous easy-to-use tables to guide the reader without the need for further calculations or statistical expertise. This will be an indispensable text for researchers and graduates in the medical and biological sciences needing to apply power analysis in the design of their experiments.

Statistical Power Analysis With Missing Data

Author: Adam Davey
Publisher: Routledge
ISBN: 1135269319
Size: 73.90 MB
Format: PDF
View: 6958
Download Read Online

Statistical Power Analysis With Missing Data from the Author: Adam Davey. Statistical power analysis has revolutionized the ways in which we conduct and evaluate research. Similar developments in the statistical analysis of incomplete (missing) data are gaining more widespread applications. This volume brings statistical power and incomplete data together under a common framework, in a way that is readily accessible to those with only an introductory familiarity with structural equation modeling. It answers many practical questions such as: How missing data affects the statistical power in a study How much power is likely with different amounts and types of missing data How to increase the power of a design in the presence of missing data, and How to identify the most powerful design in the presence of missing data. Points of Reflection encourage readers to stop and test their understanding of the material. Try Me sections test one’s ability to apply the material. Troubleshooting Tips help to prevent commonly encountered problems. Exercises reinforce content and Additional Readings provide sources for delving more deeply into selected topics. Numerous examples demonstrate the book’s application to a variety of disciplines. Each issue is accompanied by its potential strengths and shortcomings and examples using a variety of software packages (SAS, SPSS, Stata, LISREL, AMOS, and MPlus). Syntax is provided using a single software program to promote continuity but in each case, parallel syntax using the other packages is presented in appendixes. Routines, data sets, syntax files, and links to student versions of software packages are found at www.psypress.com/davey. The worked examples in Part 2 also provide results from a wider set of estimated models. These tables, and accompanying syntax, can be used to estimate statistical power or required sample size for similar problems under a wide range of conditions. Class-tested at Temple, Virginia Tech, and Miami University of Ohio, this brief text is an ideal supplement for graduate courses in applied statistics, statistics II, intermediate or advanced statistics, experimental design, structural equation modeling, power analysis, and research methods taught in departments of psychology, human development, education, sociology, nursing, social work, gerontology and other social and health sciences. The book’s applied approach will also appeal to researchers in these areas. Sections covering Fundamentals, Applications, and Extensions are designed to take readers from first steps to mastery.

How Many Subjects

Author: Helena Chmura Kraemer
Publisher: SAGE
ISBN: 9780803929494
Size: 68.42 MB
Format: PDF, Docs
View: 5127
Download Read Online

How Many Subjects from the Author: Helena Chmura Kraemer. How Many Subjects? is a practical guide to sample size calculations and general principles of cost-effective research. It introduces a simple technique of statistical power analysis which allows researchers to compute approximate sample sizes and power for a wide variety of research designs. Because the same technique is used with only slight modifications for different statistical tests, researchers can easily compare the sample sizes required by different designs and tests to make cost-effective decisions in planning a study. These comparisons, emphasized throughout the book, demonstrate important principles of design, measurement and analysis that are rarely discussed in courses or textbooks.

Sample Size Determination In Quantitative Social Work Research

Author: Patrick Dattalo
Publisher: Oxford University Press
ISBN: 9780198043089
Size: 74.56 MB
Format: PDF, ePub, Mobi
View: 453
Download Read Online

Sample Size Determination In Quantitative Social Work Research from the Author: Patrick Dattalo. A researcher's decision about the sample to draw in a study may have an enormous impact on the results, and it rests on numerous statistical and practical considerations that can be difficult to juggle. Computer programs help, but no single software package exists that allows researchers to determine sample size across all statistical procedures. This pocket guide shows social work students, educators, and researchers how to prevent some of the mistakes that would result from a wrong sample size decision by describing and critiquing four main approaches to determining sample size. In concise, example-rich chapters, Dattalo covers sample-size determination using power analysis, confidence intervals, computer-intensive strategies, and ethical or cost considerations, as well as techniques for advanced and emerging statistical strategies such as structural equation modeling, multilevel analysis, repeated measures MANOVA and repeated measures ANOVA. He also offers strategies for mitigating pressures to increase sample size when doing so may not be feasible. Whether as an introduction to the process for students or as a refresher for experienced researchers, this practical guide is a perfect overview of a crucial but often overlooked step in empirical social work research.

The Oxford Handbook Of Quantitative Methods Vol 2 Statistical Analysis

Author: Todd D. Little
Publisher: Oxford University Press
ISBN: 0199934908
Size: 70.29 MB
Format: PDF, Kindle
View: 2804
Download Read Online

The Oxford Handbook Of Quantitative Methods Vol 2 Statistical Analysis from the Author: Todd D. Little. Research today demands the application of sophisticated and powerful research tools. Fulfilling this need, The Oxford Handbook of Quantitative Methods is the complete tool box to deliver the most valid and generalizable answers to todays complex research questions. It is a one-stop source for learning and reviewing current best-practices in quantitative methods as practiced in the social, behavioral, and educational sciences. Comprising two volumes, this handbook covers a wealth of topics related to quantitative research methods. It begins with essential philosophical and ethical issues related to science and quantitative research. It then addresses core measurement topics before delving into the design of studies. Principal issues related to modern estimation and mathematical modeling are also detailed. Topics in the handbook then segway into the realm of statistical inference and modeling with chapters dedicated to classical approaches as well as modern latent variable approaches. Numerous chapters associated with longitudinal data and more specialized techniques round out this broad selection of topics. Comprehensive, authoritative, and user-friendly, this two-volume set will be an indispensable resource for serious researchers across the social, behavioral, and educational sciences.

Power Analysis Of Trials With Multilevel Data

Author: Mirjam Moerbeek
Publisher: CRC Press
ISBN: 1498729908
Size: 28.63 MB
Format: PDF, Docs
View: 6917
Download Read Online

Power Analysis Of Trials With Multilevel Data from the Author: Mirjam Moerbeek. Power Analysis of Trials with Multilevel Data covers using power and sample size calculations to design trials that involve nested data structures. The book gives a thorough overview of power analysis that details terminology and notation, outlines key concepts of statistical power and power analysis, and explains why they are necessary in trial design. It guides you in performing power calculations with hierarchical data, which enables more effective trial design. The authors are leading experts in the field who recognize that power analysis has attracted attention from applied statisticians in social, behavioral, medical, and health science. Their book supplies formulae that allow statisticians and researchers in these fields to perform calculations that enable them to plan cost-efficient trials. The formulae can also be applied to other sciences. Using power analysis in trial design is increasingly important in a scientific community where experimentation is often expensive, competition for funding among researchers is intense, and agencies that finance research require proposals to give thorough justification for funding. This handbook shows how power analysis shapes trial designs that have high statistical power and low cost, using real-life examples. The book covers multiple types of trials, including cluster randomized trials, multisite trials, individually randomized group treatment trials, and longitudinal intervention studies. It also offers insight on choosing which trial is best suited to a given project. Power Analysis of Trials with Multilevel Data helps you craft an optimal research design and anticipate the necessary sample size of data to collect to give your research maximum effectiveness and efficiency.