Robust Design Methodology For Reliability

Author: Bo Bergman
Publisher: John Wiley & Sons
ISBN: 047074880X
Size: 17.20 MB
Format: PDF, Docs
View: 1373
Download Read Online

Robust Design Methodology For Reliability from the Author: Bo Bergman. Based on deep theoretical as well as practical experience in Reliability and Quality Sciences, Robust Design Methodology for Reliability constructively addresses practical reliability problems. It offers a comprehensive design theory for reliability, utilizing robust design methodology and six sigma frameworks. In particular, the relation between un-reliability and variation and uncertainty is explored and reliability improvement measures in early product development stages are suggested. Many companies today utilise design for Six Sigma (DfSS) for strategic improvement of the design process, but often without explicitly describing the reliability perspective; this book explains how reliability design can relate to and work with DfSS and illustrates this with real–world problems. The contributors advocate designing for robustness, i.e. insensitivity to variation in the early stages of product design development. Methods for rational treatment of uncertainties in model assumptions are also presented. This book promotes a new approach to reliability thinking that addresses the design process and proneness to failure in the design phase via sensitivity to variation and uncertainty; includes contributions from both academics and industry practitioners with a broad scope of expertise, including quality science, mathematical statistics and reliability engineering; takes the innovative approach of promoting the study of variation and uncertainty as a basis for reliability work; includes case studies and illustrative examples that translate the theory into practice. Robust Design Methodology for Reliability provides a starting point for new thinking in practical reliability improvement work that will appeal to advanced designers and reliability specialists in academia and industry including fatigue engineers, product development and process/ quality professionals, especially those interested in and/ or using the DfSS framework.

Statistical Robust Design

Author: Magnus Arner
Publisher: John Wiley & Sons
ISBN: 1118841956
Size: 58.11 MB
Format: PDF
View: 1746
Download Read Online

Statistical Robust Design from the Author: Magnus Arner. A UNIQUELY PRACTICAL APPROACH TO ROBUST DESIGN FROM A STATISTICAL AND ENGINEERING PERSPECTIVE Variation in environment, usage conditions, and the manufacturing process has long presented a challenge in product engineering, and reducing variation is universally recognized as a key to improving reliability and productivity. One key and cost-effective way to achieve this is by robust design – making the product as insensitive as possible to variation. With Design for Six Sigma training programs primarily in mind, the author of this book offers practical examples that will help to guide product engineers through every stage of experimental design: formulating problems, planning experiments, and analysing data. He discusses both physical and virtual techniques, and includes numerous exercises and solutions that make the book an ideal resource for teaching or self-study. • Presents a practical approach to robust design through design of experiments. • Offers a balance between statistical and industrial aspects of robust design. • Includes practical exercises, making the book useful for teaching. • Covers both physical and virtual approaches to robust design. • Supported by an accompanying website (www.wiley/com/go/robust) featuring MATLAB® scripts and solutions to exercises. • Written by an experienced industrial design practitioner. This book’s state of the art perspective will be of benefit to practitioners of robust design in industry, consultants providing training in Design for Six Sigma, and quality engineers. It will also be a valuable resource for specialized university courses in statistics or quality engineering.

Structural Design Optimization Considering Uncertainties

Author: Yannis Tsompanakis
Publisher: Taylor & Francis
ISBN: 1134055064
Size: 74.69 MB
Format: PDF, ePub
View: 7475
Download Read Online

Structural Design Optimization Considering Uncertainties from the Author: Yannis Tsompanakis. Uncertainties play a dominant role in the design and optimization of structures and infrastructures. In optimum design of structural systems due to variations of the material, manufacturing variations, variations of the external loads and modelling uncertainty, the parameters of a structure, a structural system and its environment are not given, fixed coefficients, but random variables with a certain probability distribution. The increasing necessity to solve complex problems in Structural Optimization, Structural Reliability and Probabilistic Mechanics, requires the development of new ideas, innovative methods and numerical tools for providing accurate numerical solutions in affordable computing times. This book presents the latest findings on structural optimization considering uncertainties. It contains selected contributions dealing with the use of probabilistic methods for the optimal design of different types of structures and various considerations of uncertainties. The first part is focused on reliability-based design optimization and the second part on robust design optimization. Comprising twenty-one, self-contained chapters by prominent authors in the field, it forms a complete collection of state-of-the-art theoretical advances and applications in the fields of structural optimization, structural reliability, and probabilistic computational mechanics. It is recommended to researchers, engineers, and students in civil, mechanical, naval and aerospace engineering and to professionals working on complicated costs-effective design problems.

Variation Aware Design Of Custom Integrated Circuits A Hands On Field Guide

Author: Trent McConaghy
Publisher: Springer Science & Business Media
ISBN: 146142268X
Size: 40.33 MB
Format: PDF, ePub
View: 2907
Download Read Online

Variation Aware Design Of Custom Integrated Circuits A Hands On Field Guide from the Author: Trent McConaghy. This book targets custom IC designers who are encountering variation issues in their designs, especially for modern process nodes at 45nm and below, such as statistical process variations, environmental variations, and layout effects. It teaches them the state-of-the-art in Variation-Aware Design tools, which help the designer to analyze quickly the variation effects, identify the problems, and fix the problems. Furthermore, this book describes the algorithms and algorithm behavior/performance/limitations, which is of use to designers considering these tools, designers using these tools, CAD researchers, and CAD managers.

Feedback Systems

Author: Karl Johan Aström
Publisher: Princeton University Press
ISBN: 1400828732
Size: 26.59 MB
Format: PDF, Kindle
View: 2132
Download Read Online

Feedback Systems from the Author: Karl Johan Aström. This book provides an introduction to the mathematics needed to model, analyze, and design feedback systems. It is an ideal textbook for undergraduate and graduate students, and is indispensable for researchers seeking a self-contained reference on control theory. Unlike most books on the subject, Feedback Systems develops transfer functions through the exponential response of a system, and is accessible across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. They provide exercises at the end of every chapter, and an accompanying electronic solutions manual is available. Feedback Systems is a complete one-volume resource for students and researchers in mathematics, engineering, and the sciences. Covers the mathematics needed to model, analyze, and design feedback systems Serves as an introductory textbook for students and a self-contained resource for researchers Includes exercises at the end of every chapter Features an electronic solutions manual Offers techniques applicable across a range of disciplines

Strengthening Forensic Science In The United States

Author: Policy and Global Affairs
Publisher: National Academies Press
ISBN: 0309131308
Size: 62.56 MB
Format: PDF, ePub, Docs
View: 7443
Download Read Online

Strengthening Forensic Science In The United States from the Author: Policy and Global Affairs. Scores of talented and dedicated people serve the forensic science community, performing vitally important work. However, they are often constrained by lack of adequate resources, sound policies, and national support. It is clear that change and advancements, both systematic and scientific, are needed in a number of forensic science disciplines to ensure the reliability of work, establish enforceable standards, and promote best practices with consistent application. Strengthening Forensic Science in the United States: A Path Forward provides a detailed plan for addressing these needs and suggests the creation of a new government entity, the National Institute of Forensic Science, to establish and enforce standards within the forensic science community. The benefits of improving and regulating the forensic science disciplines are clear: assisting law enforcement officials, enhancing homeland security, and reducing the risk of wrongful conviction and exoneration. Strengthening Forensic Science in the United States gives a full account of what is needed to advance the forensic science disciplines, including upgrading of systems and organizational structures, better training, widespread adoption of uniform and enforceable best practices, and mandatory certification and accreditation programs. While this book provides an essential call-to-action for congress and policy makers, it also serves as a vital tool for law enforcement agencies, criminal prosecutors and attorneys, and forensic science educators.