Human Activity Recognition And Prediction

Author: Yun Fu
Publisher: Springer
ISBN: 3319270044
Size: 23.31 MB
Format: PDF, Kindle
View: 2920
Download Read Online

Human Activity Recognition And Prediction from the Author: Yun Fu. This book provides a unique view of human activity recognition, especially fine-grained human activity structure learning, human-interaction recognition, RGB-D data based action recognition, temporal decomposition, and causality learning in unconstrained human activity videos. The techniques discussed give readers tools that provide a significant improvement over existing methodologies of video content understanding by taking advantage of activity recognition. It links multiple popular research fields in computer vision, machine learning, human-centered computing, human-computer interaction, image classification, and pattern recognition. In addition, the book includes several key chapters covering multiple emerging topics in the field. Contributed by top experts and practitioners, the chapters present key topics from different angles and blend both methodology and application, composing a solid overview of the human activity recognition techniques.

Human Activity Recognition

Author: Miguel A. Labrador
Publisher: CRC Press
ISBN: 1466588276
Size: 76.80 MB
Format: PDF, ePub, Mobi
View: 547
Download Read Online

Human Activity Recognition from the Author: Miguel A. Labrador. Learn How to Design and Implement HAR Systems The pervasiveness and range of capabilities of today’s mobile devices have enabled a wide spectrum of mobile applications that are transforming our daily lives, from smartphones equipped with GPS to integrated mobile sensors that acquire physiological data. Human Activity Recognition: Using Wearable Sensors and Smartphones focuses on the automatic identification of human activities from pervasive wearable sensors—a crucial component for health monitoring and also applicable to other areas, such as entertainment and tactical operations. Developed from the authors’ nearly four years of rigorous research in the field, the book covers the theory, fundamentals, and applications of human activity recognition (HAR). The authors examine how machine learning and pattern recognition tools help determine a user’s activity during a certain period of time. They propose two systems for performing HAR: Centinela, an offline server-oriented HAR system, and Vigilante, a completely mobile real-time activity recognition system. The book also provides a practical guide to the development of activity recognition applications in the Android framework.

Smartphone Based Human Activity Recognition

Author: Jorge Luis Reyes Ortiz
Publisher: Springer
ISBN: 3319142747
Size: 68.63 MB
Format: PDF, Docs
View: 3796
Download Read Online

Smartphone Based Human Activity Recognition from the Author: Jorge Luis Reyes Ortiz. The book reports on the author’s original work to address the use of today’s state-of-the-art smartphones for human physical activity recognition. By exploiting the sensing, computing and communication capabilities currently available in these devices, the author developed a novel smartphone-based activity-recognition system, which takes into consideration all aspects of online human activity recognition, from experimental data collection, to machine learning algorithms and hardware implementation. The book also discusses and describes solutions to some of the challenges that arose during the development of this approach, such as real-time operation, high accuracy, low battery consumption and unobtrusiveness. It clearly shows that it is possible to perform real-time recognition of activities with high accuracy using current smartphone technologies. As well as a detailed description of the methods, this book also provides readers with a comprehensive review of the fundamental concepts in human activity recognition. It also gives an accurate analysis of the most influential works in the field and discusses them in detail. This thesis was supervised by both the Universitat Politècnica de Catalunya (primary institution) and University of Genoa (secondary institution) as part of the Erasmus Mundus Joint Doctorate in Interactive and Cognitive Environments.

Human Activity Recognition In Video

Author: Ross Messing
Size: 30.32 MB
Format: PDF, Kindle
View: 3581
Download Read Online

Human Activity Recognition In Video from the Author: Ross Messing. "This thesis explores the problem of recognizing complex human activities involving the manipulation of objects in high resolution video. Inspired by human psychophysical performance, I develop and evaluate an activity recognition feature derived from the velocity histories of tracked keypoints. These features have a much greater spatial and temporal range than existing video features. I show that a generative mixture model using these features performs comparably to local spatio-temporal features on the KTH activity recognition dataset. I additionally introduce and explore a new activity recognition dataset of activities of daily living (URADL), containing high resolution video sequences of complex activities. I demonstrate the superior performance of my velocity history feature on this dataset, and explore ways in which it can be extended. I investigate the value of a more sophisticated latent velocity model for velocity histories. I explore the addition of contextual semantic information to the model, whether fully automatic or derived from supervision, and provide a sketch for the inclusion of this information in any feature-based generative model for activity recognition or time series data. This approach performs comparably to established methods on the KTH dataset, and significantly outperforms local spatio-temporal features on the challenging new URADL dataset. I further develop another new dataset, URADL2, and explore transferring knowledge between related video activity recognition domains. Using a straightforward feature-expansion transfer learning technique, I show improved performance on one dataset using activity models transferred from the other dataset"--Leaves iv-v.

Plan Activity And Intent Recognition

Author: Gita Sukthankar
Publisher: Newnes
ISBN: 012401710X
Size: 78.99 MB
Format: PDF, Mobi
View: 6879
Download Read Online

Plan Activity And Intent Recognition from the Author: Gita Sukthankar. Plan recognition, activity recognition, and intent recognition together combine and unify techniques from user modeling, machine vision, intelligent user interfaces, human/computer interaction, autonomous and multi-agent systems, natural language understanding, and machine learning. Plan, Activity, and Intent Recognition explains the crucial role of these techniques in a wide variety of applications including: personal agent assistants computer and network security opponent modeling in games and simulation systems coordination in robots and software agents web e-commerce and collaborative filtering dialog modeling video surveillance smart homes In this book, follow the history of this research area and witness exciting new developments in the field made possible by improved sensors, increased computational power, and new application areas. Combines basic theory on algorithms for plan/activity recognition along with results from recent workshops and seminars Explains how to interpret and recognize plans and activities from sensor data Provides valuable background knowledge and assembles key concepts into one guide for researchers or students studying these disciplines

New Frontiers In Applied Artificial Intelligence

Author: Ngoc Thanh Nguyen
Publisher: Springer Science & Business Media
ISBN: 354069045X
Size: 50.59 MB
Format: PDF, Kindle
View: 2948
Download Read Online

New Frontiers In Applied Artificial Intelligence from the Author: Ngoc Thanh Nguyen. This book constitutes the refereed proceedings of the 21st International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, IEA/AIE 2008, held in Wroclaw, Poland, in June 2008. The 75 revised full papers presented were carefully reviewed and selected from 302 submissions. The papers are organized in topical sections on computer vision, fuzzy system applications, robot and manufacturing, data mining and KDS, neural networks, machine learning, natural language processing, internet application and education, heuristic search, application systems, agent-based system, evolutionary and genetic algorithms, knowledge management, and other applications. The book concludes with 15 contributions from the following special sessions: knowledge driven manufacturing systems, joint session on adaptive networked systems and fuzzy knowledge bases, and software agents and multi-agent systems.